Project

RECONFIGURABLE ANTENNAS FOR MM-WAVE BROADBAND COMMUNICATIONS (RECOMM)

Date

2020 - 2022

Acknowledgements

In the coming years, the implementation of broadband communications systems in the millimeter band with global coverage will acquire special relevance. It aims at a convergence of the fixed and mobile services to offer a universal quality of service similar to that of the already mature fiber optic networks. The imminent deployment of 5G networks promises to provide broadband service in sufficiently populated areas, the rest being covered by next-generation communications satellites. The latter allow uninterrupted connection in means of transport (trains, ships, planes) and serve as backup in areas affected by natural disasters or conflict and / or remote zones.

The development of antennas for satellite communications in Ka-band, valid for trains or airplanes, represents a great technological challenge that has not yet been effectively solved by the industry. Very low profile antennas must meet very demanding specifications in terms of gain, secondary lobes, high purity circular polarization, and dual band operation. To these requirements must be added a high degree of reconfigurability, since they must be able to switch polarization in addition to pointing the beam dynamically towards the satellite to compensate for the movement. Also, the deployment of the emerging 5G demands reconfigurable multibeam antennas capable of serving several users simultaneously.

This project addresses the development of new antenna concepts in the millimeter band capable of meeting the demanding needs of these communication systems. Special attention is paid to highly efficient antennas, dual in polarization and / or frequency and capable of reconfiguring their radiation pattern. The control of beam pointing, maintaining the flat character of the antenna, is one of the main objectives of the project. The implementation of a low-cost alternative mechanism to electronic phase shifters opens the door to the development of competitive low-profile terminals. Innovative solutions capable of generating several simultaneous directing beams are also implemented, valid for multi-user and/or multi-path MIMO communications.

Principal investigator

-

Research Areas

Antennas, Microwaves and Propagation

Research Group

Antennas and Propagation Lab (APL)

Budget