Theses
Beam position monitoring in the clic drive beam decelerator using stripline technology
Year | 2016 |
Author | Alfonso Benot Morell |
Director(s) | |
Abstract | The Compact Linear Collider (CLIC) is an electron-positron collider conceived for the study of High-Energy Physics in the TeV center of mass energy region, is based on a two-beam operation principle: instead of using active elements (klystrons), the necessary RF power to accelerate the Main Beam (MB) is obtained from the deceleration of a high-current, moderate energy Drive Beam (DB) in the so-called Power Extraction and Transfer Structures (PETS). These structures emit an RF signal of about 130 MW power at 12 GHz. As this frequency is above the cut-o ff frequency of the fundamental mode for the specified beam pipe dimensions (7.6 GHz), the inference propagates from the PETS to the neighboring devices, including the Beam Position Monitors (BPM). According to the CLIC Conceptual Design Report (CDR), an ef ficient beam position monitoring system for the CLIC DB decelerator needs to meet the following requirements: - It should be as simple and economic as possible, as 41580 units are required, amounting to 75% of all CLIC BPMs. - The signal processing scheme should not be a ffected by the PETS interference. This rules out processing the signals at the beam bunching frequency (12 GHz). - The resulting position signal should detect changes in the beam position whose duration is 10 ns or longer. - The required spatial resolution is 2 um for a 23 mm diameter vacuum pipe. - Wide dynamic range: the electronic acquisition system must be able to process signals with extreme levels, induced by either very high (100 A) or very low (3 A) current beams. This PhD thesis describes the electromagnetic and mechanical design of the first prototype BPM developed for the CLIC Drive Beam and its characterization tests in laboratory and with beam. The first two chapters introduce the CLIC project and review the state-of-the-art beam position monitoring techniques. Chapter 3 presents the design of the BPM. The stripline technology has been selected, as it is the only one among the most commonly used BPM techniques to present a suitable frequency response to filter out the RF interference caused by the PETS. Choosing an appropriate length for the electrodes, it is possible to tune one the periodic notches in the stripline frequency response to 12 GHz. The influence of di erent electromagnetic and geometrical aspects is also studied, such as beam coupling impedance or the ratio between longitudinal and transverse dimensions. The design of the electronic acquisition system is presented in Chapter 4, considering the project requirements in terms of resolution (2 u m), accuracy (20 um) and time resolution (10 ns). Due to the high amount of units required, the number of electronics components has been minimized. As the designed signal processing scheme is based on charge integration, it can be adapted to di erent stripline pick-ups by simply modifying the attenuator settings according to the required output signal levels. The laboratory characterization tests of the prototype stripline BPM, in the low and the high frequency ranges, performed with a thin wire and a coaxial waveguide, respectively, are described in Chapter 5. The measurement results are compared with the theoretical estimation and the electromagnetic field simulations. In addition, the high-frequency test reveals that the first prototype stripline BPM does not provide su cient suppression of the 12 GHz PETS RF interference. An additional study proposed several modifications and guidelines for a second prototype stripline BPM. Finally, Chapter 6 presents the beam tests of the prototype stripline BPM at the CLIC Test Facility 3 (CTF3) in the Test Beam Line (TBL), a scaled version of the CLIC Drive Beam decelerator. Two types of tests were performed: linearity/sensivity and resolution. These results are compared to the ones in the laboratory characterization tests. An upper bound of the resolution is estimated performing a Singular Value Decomposition (SVD) analysis. |
Pages | 143 |